
Software Metrics in Static Program AnalysisAndreas Vogelsang1, Ansgar Fehnker2, Ralf Huuck2, and Wolfgang Reif3
1 Fakultät für Informatik, Technische Universität MünchenBoltzmannstr. 3, 85748 Garching b. München, Germanyandreas.vogelsang@in.tum.de

2 National ICT Australia Ltd. (NICTA)? and University of New South WalesLocked Bag 6016, Sydney NSW 1466, Australia{ansgar.fehnker,ralf.huuck}@nicta.com.au
3 Lehrstuhl für Softwaretechnik und Programmiersprachen, Universität AugsburgUniverstitätsstrasse 14, 86135 Augsburg, Germanyreif@informatik.uni-augsburg.deAbstract Software metrics play an important role in the managementof professional software projects. Metrics are used, e.g., to track deve-lopment progress, to measure restructuring impact and to estimate codequality. They are most bene�cial if they can be computed continuouslyat development time. This work presents a framework and an implemen-tation for integrating metric computations into static program analysis.The contributions are a language and formal semantics for user-de�nablemetrics, an implementation and integration in the existing static analy-sis tool Goanna, and a user-de�nable visualization approach to displaymetrics results. Moreover, we report our experiences on a case study ofa popular open source code base.Keywords: software metrics, static program analysis, software quality,software maintenance1 IntroductionMany experts from academia as well as from industry would agree on the factthat most of today's software products and their development process are ofcomparatively low quality. The 2009 Standish Group CHAOS Report [15] forexample states that 24% of all software projects fail, which means they arecancelled prior to completion or delivered and never used, while only 32% can beconsidered as successful. One of the contributing factors is that modern softwareis almost never completely developed from scratch, but is rather extended andmodi�ed using existing code and often includes third party source code. This canlead to poor overall maintainability, di�cult extensibility and high complexity.To better understand the impact of code changes and track complexity issuesas well as code quality software metrics are frequently used in the softwaredevelopment life cycle.

? Funded through the Australian Government's Backing Australia's Ability initiative,in part through the Australian Research Council.

Ideally, software metrics should be computed continuously during the deve-lopment process to enable the best possible tracking. Moreover, software metricsshould be de�nable by development teams to not only cover general factors, butto measure company, project or team speci�c goals. In this work we present anintegrated and �exible approach to metric computation by embedding it intostatic program analysis. As such, metrics can be computed on demand for everycompilation even long before the software is fully developed.In particular, we present a novel metric speci�cation language (GMSL) thatenables software developers to quickly specify their own metrics. We further de-�ne the formal syntax and semantics for GMSL, and implemented an interpreterthat embeds the metric calculation in our existing static analyzer Goanna. Ontop of this we present a generic and user-de�nable visualization approach thatenables quick tracking of metric results. Moreover, we report on our experiencesintegrating a metric speci�cation language into static program analysis as wellas our experiences from real world case studies.Related to our approach are a number of tools that enable to compute metricsor query code for programming constructs. ODASA4 is a commercial softwareassets analyzer that adds all software artefact's into a repository and provides aquery engine to search for bottlenecks or quality �aws. Coverity Architec-ture Analysis5 is a commercial static program analyzer for C/C++ and Javaprograms. It o�ers an architecture analysis and comes with prede�ned metricsthat focus on complexity. Klocwork Insight6 is another commercial sourcecode analysis suite that includes an Integration Build Reporting and Metricsmodule for a large number of prede�ned metrics. NDepend7 is a Visual Stu-dio tool that helps the user to manage complex .NET code bases. NDependconsiders the code as a database and the user can query the database and dis-play the query results. SonarJ8 is another software architecture managementtool based on static analysis. Its main focus is to assure the consistency of thelogical architecture of a system and its actual implementation. Additionally, So-narJ computes metrics, such as Robert Martin's metrics [10], and provides ahistogram chart to visualize the development over time.All of the mentioned tools can be partitioned into two di�erent categories:Either o�ering a query language that allows the user to query his code for parti-cular constructs or computing metric values on the source code during the buildprocess based on pre-de�ned settings. None of the tools provide a mechanismthat allows the user to de�ne his or her own metrics that are subsequently com-puted automatically by the analysis tool in each compilation or build. Also, thevisualizations are usually speci�c to the prede�ned metrics and measures. Incontrast, our approach enables to link user-de�ned metrics to generic visualiza-tions, which are independent from the metric's semantics.4 http://semmle.com/technology/how-it-works/5 http://www.coverity.com/products/architecture-analysis.html6 http://www.klocwork.com/products/insight/7 http://www.ndepend.com/Metrics.aspx8 http://www.hello2morrow.com/products/sonarj/2

http://semmle.com/technology/how-it-works/
http://www.coverity.com/products/architecture-analysis.html
http://www.klocwork.com/products/insight/
http://www.ndepend.com/Metrics.aspx
http://www.hello2morrow.com/products/sonarj/

The next section introduces software quality metrics and static analysis, espe-cially Goanna. Section 3, and 4 cover the metric speci�cation language GMSL,metric computation in Goanna, and metric visualization. Section 5 discussesapplication of the tool to the Audacity code base, and its performance, whileSection 6 concludes with an outlook on future work.2 Integrating Software MetricsSoftware metrics. Software metrics measure properties of software and are loo-sely de�ned in the IEEE 1061 standard [9] as�A function whose inputs are software data and whose output is a singlenumerical value that can be interpreted as the degree to which softwarepossesses a given attribute that a�ects its quality. �This means that metrics make a statement about some quality attributes, arequantitative, but will have to be interpreted by a human. In this work we focus onso called software product metrics, which covers the aspects of size, complexity,and quality that can be measured on the source code and its evolution overtime. Example product metrics are lines of code, cohesion, coupling or cyclomaticcomplexity. We will go into detail in Section 3.While there has been a substantial body of work on metrics de�nitions andtheir correlation with program faults [7,13,14] or maintainability and bugs [4,5]we will not discuss which metrics are reasonable or particularly important. Nei-ther will we address which metric values indicate good or poor quality. Insteadwe are proposing a framework that allows to de�ne all these metrics in a �exibleand concise manner and integrate them into the standard compilation and sourcecode analysis process.Level of Abstraction. Metrics can be de�ned on various levels of abstraction.Common metrics such as McCabe's cyclomatic complexity [11] are de�ned onthe control �ow graph (CFG) of a program and can be stated as
CC = e− n+ 2p, (1)where e is the number of edges, n is the number of nodes and p is the num-ber of strongly connected components in the CFG. Implementations, however,are typically more language speci�c. The tool NDepend for example de�nescyclomatic complexity as:

CC = 1 + {number of the following expressions found in a method} :if|while|for|foreach|case|default|continue|goto|&&||||catch|?:|?? (2)This de�nition enumerates the concrete code constructs that contribute to cy-clomatic complexity. These di�er from language to language and the above de-�nition is only valid for the programming language C#.3

properties

GXSL

C/C++ parser

AST

GXSL
engine

model
builder

model
model

checker

warnings
GPSL
engine

GPSL

annotations

Figure 1. Goanna's model checking approach for statically analyzing C/C++ code.This work introduces an approach to de�ne metrics on a more abstract levelsuch as in (1). This means, the de�nition is closely related to its mathematicalrepresentation. This improves readability and maintainability of the metric de�-nition itself. However, we also provide means to associate these de�nitions withelements in the abstract syntax tree (AST), such that the metric de�nitions canbe automatically computed for real-life source code.Integrating Metric Computation. Metrics can be computed on their own or inte-grated into the compiler or existing source code analysis frameworks. Integrationinto existing frameworks leverages existing technology and requires fewer pro-cess changes for software development teams. This means, metric results are anadded feature of tools that are already in frequent use.In this work we integrate user-de�nable metrics in our static source codeanalyzer Goanna. This tool performs deep analysis of C/C++ source codeusing model-checking [3] technology.Goanna checks for bugs, memory leaks andsecurity vulnerabilities, is fully path-sensitive and inter-procedural, and makesuse of additional techniques such as abstract interpretation. A more detailedoverview can be found in [6].Goanna already provides two speci�cation languages for de�ning sourcecode checks. The �rst language is a tree-query language based on XPath [2] for�nding constructs and patterns of interest in the AST and is called GoannaXPath Speci�cation Language (GXSL). The second language is based on tem-poral logic expressions over paths in the CFG and is called Goanna PropertySpeci�cation Language (GPSL). GPSL allows the embedding of GXSL expres-sion. An example is to query for malloc and free constructs in GXSL and thenuse the information to de�ne in GPSL that all paths in the program from amalloc should lead to a free. Figure 1 shows how these languages feed into thestatic analysis. More details can be found in [16].This work uses the existing framework and introduces a metric speci�cationlanguage that can reference to earlier query results, count, and compute metrics4

based on arithmetic expressions. The new language will be introduced in thenext section.3 Metric Speci�cation Language GMSLThe Goanna Metric Speci�cation Language (GMSL) provides a way to de�nemetrics on an abstract level. A prerequisite for the use of GMSL is a query enginethat returns sets of nodes of the AST for which certain syntactic properties hold.As mentioned in Section 2, Goanna provides a language GXSL language tode�ne functions that select certain nodes of the AST of a program. The queriesare always evaluated on the entire AST but it is possible to pass parameters tothe queries to refer to particular node (or sub-trees) in the AST. The result of aGXSL query is a set of AST nodes.Most metrics are de�ned for a given scope, this means for a particular setof nodes in the AST. For example, a metric might be de�ned for the scope
all_classes , which means that one metric value will be computed for each class.And each class in the programm corresponds to a sub-tree in the AST. Othermetrics are de�ned for scopes like functions or namespaces . In GMSL the scopeof a metric is mention in its de�nition, and metric values will be computed forevery instance of the scope.GMSL distinguishes between two types of variables. One ranges over nodes(or sub-trees) of the AST, and the values are obtained by GXSL queries on theAST or sub-trees of it. These variables will be passed as arguments to otherGSXL queries. The other type of variable represents integer and real numbers,which either represent the cardinality of sets, results obtained from other metrics,the result of an arithmetic expression, or the aggregated result of those. Forsimplicity we assume that these numbers are reals. The actual de�nition of themetric then is a mathematical expression containing variables over the reals,queries and constants.3.1 SyntaxThe grammar of GMSL, given in Extended Backus Naur Form (EBNF), is de�-ned in Table 1. Before we introduce the semantics, we �rst provide a few examplesfor common metrics to illustrate the language. A few functions are used in theseexamples, which are provided by Goanna's AST query library. This library canbe extended by user-de�ned AST queries, e.g. GXSL functions, de�ned speci�-cally to compute metrics. The following examples also demonstrate how to de�nea wide variety of metrics found in literature.Cyclomatic Complexity Cyclomatic Complexity of a function as de�ned inNDepend is the number of branches in the control �ow of a function plus one.If we only consider one function, i.e. one strongly connected component of thecorresponding CFG, this de�nition is equal to McCabe's de�nition [11], which5

gmsl = "METRIC" name scope [venv] definition ;scope = '(' node "IN" function ')' ;name = ident ;venv = "WITH" vdecl (',' vdecl)* ;vdecl = var '=' binding ;definition = "DEF" expression ;binding = function | aggregator function "OVER" setindex ;aggregator = "SUM" | "MAX" | "MIN" | "PROD" ;setindex = node "IN" function ;function = ident ['(' [ident (',' ident)*] ')'] ;expression = var | function | num | expression op expression ;op = '+' | '-' | '*' | '/' ;var = '@' ident ;node = ident ;num = nat | real ;nat = ('0' | ... | '9')+ ;real = nat '.' nat ;ident = ('a' | 'b' | ... | 'Z' | '_')+ ;Table 1. GMSL Grammar in EBNFde�nes the cyclomatic complexity as the number of linearly independent pathsin the control �ow of a function:METRIC cc_per_f (f IN all_funs)WITH @cn = all_cond_nodes(f)DEF 1 + @cnThe metric will be computed for all nodes f returned by the GXSL query
all_funs . It is de�ned as:fun all_funs()<<./FunDecl>>This function returns the corresponding AST node for every function of a givenprogram. The metric value of f is determined by the number of conditionalnodes in f , given by the GXSL query all_cond_nodes , plus one. The query
all_cond_nodes lists all conditional nodes, similar to de�nition (2), for C/C++:fun all_cond_nodes(f)f<< .//If | .//While | .//For | .//Goto | .//Label | .//Default |.//Op2[@op='LogicalOr' or @op='LogicalAnd'] | .//Handler |.//Op3[@op='Cond']>>A�erent Coupling A�erent Coupling of a class as de�ned by ARiSA9 is thenumber of classes that call a certain class:9 http://www.arisa.se/compendium/node104.html6

http://www.arisa.se/compendium/node104.html

METRIC afferent_coupling (c IN all_classes)WITH @ca = SUM dependency(g,c) OVER g IN all_classesDEF @caThe metric will be computed for all nodes c returned by the AST query
all_classes . The metric value of c is determined by the sum of dependency(g, c),applied to all nodes g, returned by the AST query all_classes . The AST query
dependency(g, c) returns one node for class g, if there is a function call in class
g to class c.Cohesion Cohesion of a class as de�ned in [1] is a measure of how strongly-related and focused the various tasks of a class are, depending on how manymethods of a class access common �elds or call common other methods of thesame class:METRIC cohesion (c IN all_classes)WITH @N = methods_of_class(c),@E = SUM directly_related(m) OVER m IN methods_of_class(c)DEF @E /(@N * (@N-1))The metric will be computed for all nodes c returned by the AST query
all_classes . The AST query directly_related(m) returns a node for all methodsof the same class that are directly related to method m (i.e. they both access acertain common �eld or they are both calling another common method of theclass). If every method is directly related to all other methods, then the metricvalue is equal to 1.3.2 SemanticsThe semantics of GMSL will be given as a denotational semantics which usesenvironments to map syntax to semantics. There are four types of environments:� ς ∈ GXSLLib is a GXSL environment which maps GXSL function names tothe actual GXSL functions.� µ ∈ MEnv is a metric environment that maps metric names to their semanticfunction.� η ∈ NEnv is a node environment which maps node variables to their corres-ponding AST node.� ν ∈ VENV is a variable environment which maps counting variables to theirsemantic value.These environments and their product, which is denoted by Env are used tode�ne the semantics of GMSL.The semantics are de�ned via a function M , which compiles a metric de�-nition to a metric environment. All information that are necessary for applyinga metric de�nition to a program are contained in that metric environment.

MJ−K : MDecl → GXSLLib ×MEnv → MEnv (3)
MJmK(ς, µ) = µ [name(m) 7→ SJmK(ς, µ, ∅, ∅)] (4)7

Function S maps, given an initial environment, the environment to a functionthat takes a program and maps the nodes of this program that are within thescope of the metric to real numbers. It is de�ned as follows.
SJ−K : MDecl → (Env → (Πp : Prog . nodes(p) ⇀ R)) (5)
SJMETRIC name (scope IN f) venv definitionK(ς, µ, η, ν) = (6)

λp ∈ Prog . λn ∈ GJfK(ς, η)(p) . (7)
DJdefinitionK (updV (venv)(ς, µ, η[scope 7→ n], ν)(p)) (p) (8)This de�nition re�ects that a metric encompasses a scope, a declaration ofcounting variables, and an arithmetic expression over variables and applicationsof GMSL and GXSL functions. The set GJfK(ς, η)(p) in (7) contains all scopeinstances. Function G is de�ned by the GXSL semantics, and returns for a givenenvironment a set of AST nodes. Given the variable declaration part, updV in(8) updates ν ∈ VEnv such that it maps the counting variables to the semantics

B of the associated binding. Function D associates the metric with the semantics
E for the associated arithmetic expression. We omit the formal de�nition of D,and updV for brevity; E will be de�ned below. The semantics of the bindings arede�ned as follows:

BJ−K : binding → (GXSLLib ×MEnv ×NEnv → (Prog → R)) (9)
BJfK(ς, µ, η) = λp ∈ Prog .FJfK(ς, µ, η)(p) (10)
BJSUM f OVER node IN gK(ς, µ, η) = (11)

λp ∈ Prog .
∑

n∈GJgK(ς,η)(p)

FJfK(ς, µ, η[node 7→ n])(p) (12)The semantics of the remaining aggregators PROD, MAX, MIN are de�nedanalogously. A binding of a counting variable can either be a simple function oran aggregation over a set of numbers determined by the application of a functionon the results of a node set, returned by another function. Simple functions in thiscase can be GXSL query functions from the library or the name of another GMSLmetric. The semantics of a simple function f is determined by the semanticfunction F . If f is a GXSL library function, FJfK(ς, µ, η)(p) in (10) or (12)returns the cardinality of the associated set. If f is a GMSL library function, itreturns a real number representing a metric value.
FJ−K : function → (GXSLLib ×MEnv ×NEnv → (Prog → R))

FJlibfun(n1, . . . , nk)K(ς, µ, η) = λp ∈ Prog . |GJlibfun(n1, . . . , nk)K(ς, η)(p)|

FJmetric(n)K(ς, µ, η) = λp ∈ Prog . µ(metric)(p)(η(n)(p))8

The arithmetic expression is the definition in semantic function S. The se-mantics of these arithmetic expressions are de�ned as follows:
EJ−K : definition → (Env → (Prog → R))

EJ@vK(ς, µ, η, ν) = λp ∈ Prog . ν(@v)(p)

EJnK(ς, µ, η, ν) = λp ∈ Prog .N (n)

EJexp1 + exp2K(ς, µ, η, ν) =

λp ∈ Prog . EJexp1K(ς, µ, η, ν)(p) + EJexp2K(ς, µ, η, ν)(p)The semantics of the remaining mathematical operators −, ∗, / are de�nedanalogously. An expression in a de�nition can either be a counting variable, aconstant number or a composition of expressions. If the expression is a countingvariable, the semantics of it is just the semantics of the binding to which it ismapped in the counting variable environment.Example To illustrate the de�ned semantics consider the following metric de-�nitions:METRIC avg_method_cc (c IN all_classes)WITH @s = SUM cc_per_f(m) OVER m IN methods_of_class(c),@n = methods_of_class(c)DEF @s / @nThis metric avg_method_cc computes the average cyclomatic complexity of themethods of a class. The functions all_classes and methods_of_class(c) re-turn the set of all class nodes (sub-tree), or for a given class node (sub-tree) theset of all method nodes (sub-trees). Function cc_per_f(m) is a call to anotherGMSL metric that computes the cyclomatic complexity per function. This me-tric was de�ned on page 5. We apply this metric de�nition to the following C++program:class Number{private: int n;public: Number(int number){n=number;}void inc();void dec();};void Number::inc(){ n++;}void Number::dec(){ if (n>0) n--;}int main(){ return 0;}This C++ program consists of one class with two public methods and oneconstructor and a main function. Since Number :: dec() has a branching condi-tion its cyclomatic complexity is 2; the cyclomatic complexity of all other func-tions is 1. Class Number is in the set returned by the GXSL query all_classes(applied to the program), thus within its scope.9

view

GXSL

C/C++ parser

AST

GXSL
engine

GMSL
engine

GMSL
metric

db
visualisation

module
metricFigure 2. Goanna's architecture for metric computation.Variable @s has value∑m∈G[methods_of_class(c)] M[cc_per_f](m), i.e 4. Variable@n has value |G[methods_of_class(c)]|, i.e 3 as there are three methods. Hence,the expression @s/@n evaluates to an average cyclomatic complexity of 1 1

3 .4 Metric Module4.1 GMSL InterpreterThe Goanna GMSL interpreter is an extension to the existing Goanna ana-lyzer. An overview of the extended architecture can be found in Figure 2. Themetrics interpreter sits on top of the existing GXSL query engine, i.e., mostlyuses existing library functions for pattern matching constructs of interest, andinterprets the metric speci�cation written in GMSL. Metric speci�cations arewritten in text �les and that way passed to the metric module.From an implementation point of view it is interesting to note that somemetrics are incrementally computed during an analysis run with the help of adatabase. The reason is as follows: Some metrics require more information thanwhat can be gathered from a local function or a single �le. For instance, tocompute the number of method instances of a class or computing the numberof calling functions for a given callee typically requires to aggregate informationfrom the whole project. Therefore, we use a database to store partial informationwhere necessary and aggregate this information during the analysis of the wholeprogram.4.2 Visualization ModuleThe previous sections covered the de�nition and computation of metrics. Ho-wever, as mentioned in Section 2 software metrics are meant to be interpretedby humans. To assist the judging process and help to understand the data we10

de�ne a generic visualization model. This enables a number of di�erent viewsfor a given set of metric values and allows the visualization of any user-de�nedmetric.To assist interpretations of the data, users of Goanna[]'s metric module canspecify information which will be used in tooltip, comments, and most impor-tantly, to properly scale the di�erent metrics. For the latter we implementeda user-de�ned mapping of GMSL output to a �nite number of categories. Forinstance, the following ranges and categories were de�ned for cyclomatic com-plexity:= 1 : No Branching1-15 : Easy15-30 : Hard to Maintain> 30 : Extremely ComplexThese categories can be used as the visualization domain for di�erent views, andaid the interpretation of the results.In the following we describe the four views for metric visualization imple-mented in Goanna. We say S = (M, t), is a snapshot of a project, where M isa set of GMSL metrics and t is a time stamp.Time view: The time view is a sequence of program snapshots ordered by theirtime stamps. Given a sequence of snapshots (M0, t0), . . . , (Mn, tn) the time viewwill display for each time stamp all chosen metric results per scope in Mi. Thisprovides a good overview of how di�erent metric values change over time. Inthe visualization module this will be displayed as a stacked bar chart as seen inFigure 3(a).Metric view: The metric view is the summary of one metric for all elements inone scopes at one point in time, i.e., for a single snapshot (M, t). In Goannathe metric view is implemented by a horizontal bar chart that lists the metricvalues of di�erent elements in the scope in decreasing order. Figure 3(b) showsan example for the ranking of classes by cohesion.Scope view: The scope view is the summary of all metric values that are com-puted for a certain instance of a scope at a certain time. The scope view isimplemented by a radar chart where every axis represents a metric. An examplefor the di�erent metric values of a given class is given in Figure 4(a).Correlation view: The correlation view is a combination of the metric view andthe scope view. It enables the user to examine how the values of a pair of metricscorrelate over several scope instances. The correlation view is implemented inthe form of an X-Y-Plot. See Figure 4(b) for an example.The di�erent metric views are con�gurable and can be combined in a dash-board if desired, but most importantly they are independent from a metric itself.As such they can visualize any metric and su�ciently provide a quick overviewof the status of a software project. 11

(a) (b)Figure 3. (a) Histogram implementation of the time view. The histogram shows thee�erent coupling over time for di�erent classes. (b)Bar chart implementation of themetric view. Ranking of classes by cohesion.5 Case StudyThis section reports on the application of Goanna's metric module to the Au-dacity10 code base. Audacity is an open source audio editor and written in C++.The latter was essential for testing the metrics de�ned for classes. With about90,000 lines of code it has a reasonable size, and is, with around 70 million totaldownloads on sourceforge.net, also quite popular. The tests were performed on adesktop PC with 4 GB RAM and an Intel Core 2 Quad CPU @ 2.66 Mhz. Theresults for an implementation of the metric module based on Goanna version1.1.The original build process of Audacity uses Gcc to compile and link thesource code. This build process takes 1:10 minutes to complete. The runtimeof the metric module will be composed of: this compile time (because Goannaalso compiles the code), the time to extract the AST of the source �les, theparsing of the metric de�nitions, and the metric computation itself. To separatethe computation from the parsing steps, the module was run with an emptymetric de�nition. Compiling the source code and extracting the AST took 03:04minutes.To measure and pro�le the performance of the metric computation, we setup six di�erent test cases. These test runs are combinations of using one localmetric, one non-local metric, and twelve miscellaneous metrics. Moreover, eachof these cases were run in single �le mode (sfm) and multiple �le mode (mfm).A local metric is a metric that uses only queries that can be evaluated directly10 http://audacity.sourceforge.net/ 12

http://audacity.sourceforge.net/

(a) (b)Figure 4. (a) Radar chart implementation of the scope view. All metric values for agiven class. (b) X-Y-Plot for the correlation view. This �gure correlates the number ofmethods of a class, with the cyclomatic complexity.on the local scope instance. For instance, the metric number_of_methods is alocal metric. A non-local metric, in contrast, iterates over sets of nodes that spanmultiple �les. Metric avg_method_cc is an example, since it iterates over theset of methods of a class, which may be distributed over multiple �les.Among the twelve metric we measured were: Cyclomatic complexity, A�erentcoupling, E�erent coupling, and Instability [8] of classes and functions, and Lackof cohesion in methods of a class (LCOM).The runtimes of these tests as well as the above mentioned runtimes for Gccand the Goanna's bug detection (goannac++) are shown in Figure 5.One immediate observation is that the runtimes heavily depend on the num-ber, kind, and complexity of the GXSL functions used. As shown by the di�erencein runtime between the computation of a local metric and a non local metric,the use of aggregations takes signi�cantly longer. This is due to the iterationover node sets, which may result in quadratic runtime, instead of linear in termsof node instances. On the other hand the evaluation of GXSL queries, especiallyon large ASTs, took the biggest proportion of time.Another observation is that when running Goanna in multiple �le mode(mfm) for one metric the runtime only increased by around 15-30% in comparisonto the single �le mode (sfm), the runtime for 12 metrics roughly doubled. Thisoverhead can be explained by three reasons: Firstly, in multiple �le mode allquery results are stored in a database. Hence, every application of a query causessome additional database operations. Secondly, an aggregation in multiple �lemode can be more expensive, because the aggregation set is typically larger. Thethird reason for the overhead had to do with slow string operations that wereused for the communication with the database.13

Figure 5. Runtimes of Goanna version 1.1 in di�erent modes on the Audacity codebase.Some of the performance issues have been addressed in later versions ofGoanna, but we like to point out that the current implementation is a prototypeand has a lot of room for improvement. What is more important is that we wereable to easily specify metrics and experimentally con�rm some of the argumentsbrought forward in the literature as we see next.Notable Results. The results we obtained were compared to some claims madeby other authors. For instance, McConnell [12] classi�es modules that handle allI/O routines as logical cohesive. In his system of seven cohesion classes logicalcohesion is the second worst. Audacity has two I/O classes, named AudioIOand FileIO. The results obtained by the metric module con�rm McConnell'sconjecture: The cohesion computed by Goanna according to Badri's [1] formularesulted in 0.28 for FileIO and 0.3 for AudioIO, which is on the low end ofthe spectrum. The highest value of cohesion of the entire project had a classcalled WrappedType, which can be identi�ed as functional cohesive. Accordingto McConnell's classi�cation, functional cohesion is the best category.The correlation view of some values also revealed some expected connectionbetween the metrics. As Figure 4(b) showed, there is a linear correlation betweencyclomatic complexity of a class with an increasing number of methods in theAudacity code base. Of course, one simple contributing factor is that the addi-tion of a method to a class will increase its cyclomatic complexity by at leastone. Another observation is the correlation between cohesion and LCOM, which14

Figure 6. Correlation of metric values of cohesion and LCOM (lack of cohesion ofmethods) on the Audacity code base.indicates the lack of cohesion of methods. As one might expect, an increasingcohesion value results in a decreasing lack of cohesion. The correlation view ofthese values for the Audacity code base is shown in Figure 6.6 ConclusionsIn this work we presented an approach to user-de�ned software metrics anda seamless integration into static program analysis. Unlike existing approachesthe metrics are not hard coded, but interpreted at analysis time from a textualdescription that can be de�ned by software developers and teams themselves.The speci�cation language GMSL is based on a formal syntax and semantics.While we chose to integrate the interpreter in our own tool there is in principleno restriction for using the same approach in, e.g., the standard compiler.On top of the metric speci�cation language we built the proof of concept ofa generic metric visualization module. This module enables the mapping of anymetric to di�erent views and the automatic user-de�ned mapping of values toabstract categories. In practice, this has been proven useful to quickly assess thestate of a software project.Future work has to address some of the current implementation issues, suchas relatively slow database access and optimizing the query interpretation. Mo-reover, some work has to go into scaling the used visualization techniques tolarge software projects. Once the user is confronted with dozens of metrics andthousands of �les it is important to have some automated visual abstraction toavoid confusion and overload. 15

References1. Badri, L., Badri, M.: A proposal of a new class cohesion criterion: An empiricalstudy. Journal of Object Technology 3(4), 145�159 (2004)2. Clark, J., DeRose, S.: XML Path Language 1.0 (XPath). W3C (1999), http://www.w3.org/TR/xpath3. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge,MA, USA (1999)4. Curtis, B., Sheppard, S.B., Milliman, P.: Third time charm: Stronger predictionof programmer performance by software complexity metrics. In: Proceedings ofthe Fourth International Conference on Software Engineering. pp. 356�360. IEEEComputer Society Press (1979)5. Elsho�, J.: An analysis of some commercial PL/I programs. IEEE Transactions onSoftware Engineering SE-5(2), 113�120 (1976)6. Fehnker, A., Huuck, R., Jayet, P., Lussenburg, M., Rauch, F.: Model CheckingSoftware at Compile Time. In: Proceedings of the 1st International Symposium onTheoretical Aspects of Software Engineering. Shanghai, China (2007)7. Ferzund, J., Ahsan, S.N., Wotawa, F.: Empirical evaluation of hunk metrics as bugpredictors. In: Abran, A., Braungarten, R., Dumke, R.R., Cuadrado-Gallego, J.J.,Brunekreef, J. (eds.) Software Process and Product Measurement, InternationalConferences IWSM 2009 and Mensura 2009. Lecture Notes in Computer Science,vol. 5891, pp. 242�254. Springer (2009)8. IBM: In pursuit of code quality: Code quality for software architects. Website,http://www.ibm.com/developerworks/java/library/j-cq04256/; visited on 3February 20109. IEEE: IEEE Standard for a Software Quality Metrics Methodology. Institute ofElectrical and Electronics Engineers (1061)10. Martin, R.C.: Agile software development: principles, patterns, and practices. AlanApt series, Prentice-Hall, pub-PH:adr (2003)11. McCabe, T.J.: A complexity measure. IEEE Transactions on Software Engineering2(4), 308�320 (1976)12. McConnell, S.: Code Complete: A Practical Handbook of Software Construction.Microsoft Press (1993)13. Misra, S.C., Bhavsar, V.C.: Relationships between selected software measures andlatent bug-density: Guidelines for improving quality. In: Kumar, V., Gavrilova,M.L., Tan, C.J.K., L'Ecuyer, P. (eds.) Computational Science and Its Applications- ICCSA 2003. Lecture Notes in Computer Science, vol. 2667, pp. 724�732. Springer(2003)14. Nagappan, N., Ball, T., Zeller, A.: Mining metrics to predict component failures. In:ICSE '06: Proceedings of the 28th international conference on Software engineering.pp. 452�461. ACM, New York, NY, USA (2006)15. The Standish Group: Chaos report 2009. Website, http://www1.standishgroup.com/newsroom/chaos_2009.php; visited on 25 February 201016. Vistein, M., Ortmeier, F., Reif, W., Huuck, R., Fehnker, A.: An abstract speci�ca-tion language for static program analysis. Electr. Notes Theor. Comput. Sci 254,181�197 (2009)
16

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.ibm.com/developerworks/java/library/j-cq04256/
http://www1.standishgroup.com/newsroom/chaos_2009.php
http://www1.standishgroup.com/newsroom/chaos_2009.php

	Software Metrics in Static Program Analysis

